Big transfer learning for automated skin cancer classification
نویسندگان
چکیده
<p>Skin cancer is an example of the most dangerous disease. Early diagnosis skin can save many people’s lives. Manual classification methods are time-consuming and costly. Deep learning has been proposed for automated cancer. Although deep showed impressive performance in several medical imaging tasks, it requires a big number images to achieve good performance. The task suffers from providing with sufficient data due expensive annotation process required experts. One used solutions transfer pre-trained models ImageNet dataset. However, learned features different image features. To end this, we introduce novel approach by training (VGG, GoogleNet, ResNet50) on large unlabelled images, first. We then train them small labeled images. Our experimental results proved that method efficient achieving accuracy 84% ResNet50 when directly trained 93.7% approach.</p>
منابع مشابه
Transfer learning for text classification
Linear text classification algorithms work by computing an inner product between a test document vector and a parameter vector. In many such algorithms, including naive Bayes and most TFIDF variants, the parameters are determined by some simple, closed-form, function of training set statistics; we call this mapping mapping from statistics to parameters, the parameter function. Much research in ...
متن کاملWebly Supervised Learning for Skin Lesion Classification
Within medical imaging, manual curation of sufficient welllabeled samples is cost, time and scale-prohibitive. To improve the representativeness of the training dataset, for the first time, we present an approach to utilize large amounts of freely available web data through web-crawling. To handle noise and weak nature of web annotations, we propose a two-step transfer learning based training p...
متن کاملVision-Based Classification of Skin Cancer using Deep Learning
This study proposes the use of deep learning algorithms to detect the presence of skin cancer, specifically melanoma, from images of skin lesions taken by a standard camera. Skin cancer is the most prevalent form of cancer in the US where 3.3 million people get treated each year. The 5-year survival rate of melanoma is 98% when detected and treated early yet over 10,000 people are lost each yea...
متن کاملDeep Learning for Skin Lesion Classification
Melanoma, a malignant form of skin cancer is very threatening to life. Diagnosis of melanoma at an earlier stage is highly needed as it has a very high cure rate. Benign and malignant forms of skin cancer can be detected by analyzing the lesions present on the surface of the skin using dermoscopic images. In this work, an automated skin lesion detection system has been developed which learns th...
متن کاملClassification of breast cancer histology images using transfer learning
Breast cancer is one of the leading causes of mortality in women. Early detection and treatment are imperative for improving survival rates, which have steadily increased in recent years as a result of more sophisticated computer-aided-diagnosis (CAD) systems. A critical component of breast cancer diagnosis relies on histopathology, a laborious and highly subjective process. Consequently, CAD s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2021
ISSN: ['2502-4752', '2502-4760']
DOI: https://doi.org/10.11591/ijeecs.v23.i3.pp1611-1619